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Abstract. Loitsyansky’s integral, I, is important because it controls the rate
of decay of kinetic energy in freely-evolving, isotropic turbulence. Traditionally
it was assumed that I is conserved in decaying turbulence and this leads to
Kolmogorov’s decay law, u2 ∼ t−10/7. However, the modern consensus is that I
is not conserved, which is a little surprising since Kolmogorov’s law is reasonably
in line with the experimental data. This discrepancy led Davidson (2000 J. Fluid
Mech. submitted) to reassess the entire problem. He concluded that, for certain
initial conditions, which are probably typical of wind tunnel turbulence, freely
evolving turbulence reaches an asymptotic state in which the variation of I is
negligible, a conclusion which is at odds with the predictions of certain closure
models. In this review we revisit this debate. We explain why the widespread
belief in the time dependence of I owes much to a misinterpretation of Batchelor
and Proudman’s original analysis (1956 Phil. Trans. R. Soc. A 248 369).
Indeed, a survey of the experimental and numerical data shows that there is little
evidence for significant long-range pressure forces of the type which underpin the
supposed variation of I. Interestingly, Batchelor and Proudman reached the
same conclusion almost half a century ago. We conclude by extending the ideas
of Loitsyansky and Kolmogorov to MHD turbulence. We note that there exists
a Loitsyansky integral for MHD turbulence (Davidson 1997 J. Fluid Mech. 336
123) and show that this leads to energy decay laws which coincide with the
experimental data.

PACS numbers: 47.27.Ak, 47.10.+g
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1. Introduction

The dynamics of the largest eddies in freely evolving turbulence has been the source of much
controversy for almost half a century. The debate was initiated by Batchelor and Proudman [3]
who were the first to note that significant statistical correlations may exist between remote points
in a turbulent flow. The information is communicated over large distances by the pressure field
which is, of course, non-local. That is, the relationship

∇2p = −ρ
∂2uiuj

∂xi∂xj
(1.1)

may be inverted using the Biot–Savart law to give

p(x) =
ρ

4π

∫

∂2u′′
i u

′′
j

∂x′′
i x

′′
j

dx′′

|x′′ − x| . (1.2)

Thus, a fluctuation in velocity at one point, say x′, sends out pressure waves which propagate to
all parts of the flow field. Suppose, for example, that we have a single eddy located near x = 0.
Then the pressure field at large distances from the eddy, due to that eddy, is

p =
ρ

4π
∂2

∂xi∂xj

(

1
x

)
∫

u′′
i u

′′
j dx.

(The first two terms in the Taylor expansion of |x′′ − x|−1 lead to integrands which integrate
to zero.) Thus the pressure field associated with our eddy falls off rather slowly, in fact as x−3.
This pressure field induces forces, and hence motion, throughout the fluid and of course this
motion is correlated to the behaviour of the eddy at x = 0.

Batchelor and Proudman showed that, in homogeneous turbulence which is anisotropic,
these non-local effects can give rise to long-range pressure–velocity correlations of the form

〈uiujp
′〉∞ ∼ r−3 r = x′ − x.

These, in turn, induce long-range velocity correlations like 〈uuu′〉∞ ∼ r−4, 〈uu′〉∞ ∼ r−5. This
discovery has profound ramifications for the way in which we view the large scales in a turbulent
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flow. It implies that every point in the flow senses every other point, and that remote boundaries
could influence the bulk properties of the turbulence.

Up until 1956 it had been believed that remote points in a turbulent flow are statistically
independent in the sense that 〈uu′〉 is exponentially small at large r. This change in viewpoint
undermined the classical theories of large-scale dynamics, particularly those theories which
had been developed by Kolmogorov, Landau and Loitsyansky. For example, it was shown by
Loitsyansky and Landau that, provided that remote points in a turbulence flow are statically
independent, then

I = −
∫

r2〈u · u′〉 dr = 8πu2
∫ ∞

0
r4f dr (1.3)

is an invariant of decaying, isotropic turbulence. (Here f is the longitudinal correlation function
and u2 = u2

x.) Loitsyansky’s proof rested on integrating the Karman–Howarth equation,
∂

∂t
[u2r4f ] = u3 ∂

∂r
[r4K] + 2vu2 ∂

∂r
[r4f ′(r)] (1.4)

while Landau’s derivation was characteristically more physical. In particular, he showed that
the angular momentum of a cloud of turbulence evolving in a large spherical domain is related
to I by

I = 〈H2〉/V + 0(l/R) R & 1. (1.5)

(Here H is the global angular momentum of the fluid,
∫

x × u dV , R is the radius of the
domain, V = 4/3πR3, and l is the integral scale of the turbulence.) Thus, conservation of
angular momentum for each realization ensures conservation of I.

Batchelor’s discovery of long-range correlations appears to invalidate both of these
derivations. In the case of Loitsyansky’s proof the contribution to dI/dt from the triple
longitudinal correlation function, 8πu3(r4K)∞, is assumed to vanish, while Landau had assumed
that the anisotropy introduced by the boundary |x| = R is confined to a vanishingly small
percentage of V as R/l → ∞. Both of these assumptions become questionable when we admit
the possibility of long-range correlations.

Now the question of whether or not I is an invariant is not just an esoteric matter. In the
first place, it calls into question Kolmogorov’s decay law,

u2 ∼ t−10/7 (1.6)

which comes from integrating the energy decay equation

du2

dt
∼ −u3

l
(1.7)

subject to the constraint

I ∼ u2l5 = constant. (1.8)

Second, the alleged invariance of I is responsible for the phenomenon of the permanence of the
big eddies. That is, for many types of turbulence the energy spectrum grows as k4 at small k
and in such cases

E(k) = (I/4!π2)k4 + · · · . (1.9)

Thus, in the absence of long-range pressure forces, E(k) is of fixed shape for small k.
This uncertainty over the behaviour of I came at an interesting time in the development of

turbulence theory. Closure models based on the quasi-normal approximation were beginning to
gain ground and, as we shall see, these predict that I is time dependent. Indeed, it was Proudman
and Reid’s [10] paper on the quasi-normal hypothesis which first drew Batchelor’s attention to
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the possibility that I is time dependent. Given the predictions of the closure models, and the
persuasive arguments of Batchelor and Proudman in the context of anisotropic turbulence, a
consensus emerged that the old views were flawed and that I is time dependent on isotropic
turbulence. This view still prevails.

However, in some ways, this is a little surprising. Consider Landau’s argument. The only
assumption made by Landau is that the bulk properties of a turbulent flow evolving in an
extremely large domain are independent of the details of the remote boundaries. This is in
accordance with our intuition. For example, we do not believe that the lateral boundaries in a
large wind-tunnel greatly influence the behaviour of grid turbulence. Nor do we believe that the
symmetry planes in a periodic cube unduly pollute the bulk properties of an (almost) isotropic
turbulent flow provided, of course, that LBOX & l†.

It is the apparent discrepancy between our intuition and the prevailing view, that I is time
dependent, which makes this such an interesting topic. Recently, Davidson [6] revisited this
problem in the context of isotropic turbulence. He concluded that, for certain initial conditions,
which are probably typical of wind tunnel turbulence, decaying turbulence reaches an asymptotic
state in which the variation of I is negligible. That is, once the details of the initial conditions
are largely forgotten, the rate of change of I is two orders of magnitude smaller than that
predicted by the quasi-normal hypothesis and so, for most practical purposes, I may be treated
as a constant.

In this paper we review the now familiar arguments in favour of I being time dependent
and then summarize the counter arguments of Davidson [6]. The structure of the paper is as
follows. In section 2 we discuss the classical (pre-Batchelor and Proudman) theories of Landau,
Loitsyansky and Kolmogorov. Then, in section 3, we discuss the celebrated attacks on the
classical view. There were three deadly blows arising from the work of Proudman and Reid [10],
Batchelor and Proudman [3] and Saffman [11]. In sections 4 and 5 we summarize the arguments
of Davidson [6] which includes: (i) a reappraisal of the three key objections to the classical view;
(ii) a discussion of the significance of the closure model predictions of I(t); and (iii) a review
of the experimental and numerical data. We conclude, in section 6, with a discussion of MHD
turbulence. Here we show that the ideas of Landau and Kolmogorov may be extended to include
turbulent, conducting fluids evolving in a uniform magnetic field. This yields decay laws which
are analogous to Kolmogorov’s law and which are consistent with the experimental evidence.

Throughout we are concerned with turbulence which is initially isotropic (or nearly
isotropic) and which is of the type which might be generated in a wind tunnel.

2. The classical theories of Landau, Loitsyansky and Kolmogorov

The Landau–Loitsyansky equation for isotropic turbulence

I = −
∫

r2〈u · u′〉 dr = 〈H2〉/V = constant (2.1)

lies at the centre of the controversy and so it is worth summarizing the assumptions implicit
in (2.1). As noted in section 1, Loitsyansky’s approach to the problem was to integrate the

† The symmetry planes not only impose anisotropy at the large scales, but also enforce unphysical long-range
correlations at the scale of LBOX . In order for the turbulence in a periodic cube to evolve in a manner which
is more or less independent of the presence of the symmetry planes it is generally agreed that LBOX/l must be
large. Failure to meet this criterion can result in unphysical behaviour. For example, under-resolved situations
can show an E ∼ k4 spectrum spontaneously converting into a E ∼ k2 spectrum, something which cannot happen
in homogeneous isotropic turbulence.
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Karman–Howarth equation (1.4). Provided that K decreases at least as fast as r−5 at large r
this yields

u2
∫ ∞

0
r4f dr = I/8π = constant. (2.2)

Traditionally it had been assumed that remote points in a turbulent flow are statistically
independent in the sense that f and K decline transcendentally fast as r → ∞. Thus,
the assumption made by Loitsyansky seemed, at the time, entirely reasonable and, as a
consequence (2.2) was, for some time, assumed to be rigorous. This was given tentative support
by the fact that Kolmogorov’s decay law u2 ∼ t−10/7, which is based on (2.2), seems not too far
out of line with the experimental data. These results were generalized by Batchelor who showed
that, in anisotropic turbulence, integrals of the type

∫

rmrn〈uiu′
j〉 dr are invariants.

The physical significance of the conservation of I was first clarified by Landau. He dispensed
with the Karman–Howarth equation and considered instead the angular momentum, H, of a
turbulent cloud evolving in a large sphere, R & l. Now the first point to note is that, for random
initial conditions, H will not be exactly zero even though the sphere is large. Indeed, the central
limit theorem tells us that, if x×u at each location can be considered as an independent random
variable, then 〈H2〉 should be proportional to V , the volume of the turbulent cloud. That is,
there will always be some incomplete cancellation of the angular momentum of the randomly
orientated eddies in the sphere. If we make the sphere larger and larger, then the average angular
momentum density [〈H2〉]1/2/V does indeed tend to zero as we would expect. Nevertheless, 〈H2〉
grows as V .

Now suppose that we stir up the contents of the sphere and then leave the turbulence to
decay. We repeat the experiment many times and form ensemble averages of the turbulent
quantities. Over many realizations the average of H will approach zero, 〈H〉 = 0. However, the
average of H2 (a positive quantity) will be non-zero. In fact, it is readily confirmed that

〈H2〉 = −
∫ ∫

r2〈u · u′〉 dr dV. (2.3)

(See Landau and Lifshitz [7].) Next Landau, like Loitsyansky, assumed that 〈u·u′〉 decays rapidly
with r. In such a case only those velocity correlations taken close to the boundary are aware
of the presence of this surface and in this sense the turbulence is approximately homogeneous
and isotropic. Also, the far-field contributions to the inner integral in (2.3) are now small and
so equation (2.3) reduces to

I = 〈H2〉/V = −
∫

r2〈u · u′〉 dr + O(l/R). (2.4)

Now H need not be conserved in each realization. In fact,
dH

dt
= Tv

where Tv is the viscous torque exerted by the boundary on the fluid. However, the central limit
theorem allows us to estimate the magnitude of Tv arising from randomly orientated eddies near
the boundary. This suggests that Tv has negligible influence as R/l → ∞. In this sense, then,
H (and hence H2) is conserved in each realization and it follows that I is an invariant.

The fact that the invariance of I could be established by two distinct routes, and that
Kolmogorov’s decay law, which is based on the conservation of I, is reasonably in line with
the experiments, meant that most people were, for some time, happy with (2.1). Everything
changed, however, in 1956.
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3. Three lethal blows to Loitsyansky’s invariant

The first sign that all was not well with the Landau–Loitsyansky equation came with the work of
Proudman and Reid [10] in isotropic turbulence. They investigated the dynamical consequences
of a popular closure scheme called the quasi-normal approximation. (This closes the problem at
third order by assuming that the velocity statistics are Gaussian to the extent that the cumulants
of the fourth-order velocity correlations are zero. This allows the fourth-order correlations to be
expressed as products of second-order correlations.) They found that, when the quasi-normal
(QN) approximation is made, the triple correlations appear to decay as r−4 at large r, rather than
exponentially fast as had traditionally been assumed. If this were also true of real turbulence it
would invalidate both Loitsyansky’s and Landau’s proofs of the invariance of I. Indeed the QN
closure model predicts

d2I

dt2
=

7
5
(4π)2

∫ ∞

0

E2

k2 dk. (3.1)

These findings were somewhat surprising and it provoked Batchelor and Proudman into revisiting
the entire problem in 1956. They considered anisotropic turbulence and dispensed with the QN
approximation. Their primary conclusion was that correlations of the form 〈uiujp′〉 can decay
rather slowly at large r, in fact as slowly as r−3. This is a direct consequence of the slow decline in
the pressure field (p∞ ∼ r−3) associated with a local fluctuation in velocity (see equation (1.2)).
Now the triple correlation

Sij,k〈uiuju
′
k〉

is governed by an equation of the form
∂Sij,k

∂t
= 〈uuuu′〉 − ∂

∂rk
〈uiujp

′〉 + · · · (3.2)

and so even if there is no algebraic tail in Sij,k at t = 0, there may well be for t > 0, and in
general we would expect 〈uuu′〉∞ ∼ r−4. It follows that, in anisotropic turbulence, we should
expect 〈uu′〉∞ ∼ r−5 and so generalized Loitsyansky integrals of the form

Iijmn =
∫

rmrn〈uiu
′
j〉 dr (3.3)

are only conditionally convergent. More importantly, the slow decline in 〈uuu′〉 means that Iijmn

is, in general, time dependent and not an invariant as traditionally assumed. (See, for example,
Batchelor [2] for the proof that, in the absence of long-range effects, Iijmn is an invariant.) Many
concluded that, since Iijmn is time dependent in anisotropic turbulence, then I should not be
an invariant in isotropic turbulence.

The third blow to Loitsyansky’s integral came with the work of Saffman [11], who noted
that, for certain initial conditions, turbulence could sustain even stronger long-range correlations
(r−3 in 〈u·u′〉). Under these conditions Loitsyansky’s integral diverges and the energy spectrum
takes the form

E ∼ Lk2 + · · · (3.4)

where L is proportional to the square of the linear momentum of the fluid,

L =
{

∫

u dV

}/

V =
∫

〈u · u′〉 dr. (3.5)

The integral L is an invariant of Saffman’s spectrum because the total linear momentum of
the turbulence is conserved. It is unaffected by the long-range pressure forces of Batchelor and
Proudman as they contribute only to O(r−4) terms in 〈uuu′〉∞ and thus to the k4 term in (3.4).
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In conclusion then, Proudman and Reid [10] showed that a plausible closure model, which is
kinematically admissible if dynamically groundless, leads to d2I/dt2 being non-zero. Batchelor
and Proudman [3] dispensed with the QN approximation and showed that, in general, one
would expect 〈uuu〉∞ ∼ r−4 in anisotropic turbulence with the consequence that Iijmn is
time dependent. Finally, Saffman [11] showed that, for certain initial conditions, Loitsyansky’s
integral does not even exist! All-in-all, by the late 1960s, things looked bad for Loitsyansky’s
would-be invariant.

4. Weaknesses in the case against the invariance of I

Recall that we are interested in isotropic turbulence of the type generated in a wind tunnel.
As noted by Davidson [6], a closer examination of the work by Proudman, Reid, Batchelor and
Saffman shows that, for this type of turbulence, the case is less conclusive than one might have
expected. Consider, for example, Batchelor and Proudman [3]. Although they established that
〈uuu′〉 decays as r−4 in anisotropic turbulence, they were unable to find any net long-range
pressure forces when the symmetries of isotropy are imposed. Indeed they concluded that the
traditional assumption of an exponential decay of 〈uu′〉∞ and 〈uuu′〉∞ could not be ruled out.
Moreover, they were aware that, in the final period of decay, measurements of f(r) in grid
turbulence indicates an exponential, rather than algebraic, decline in 〈uu′〉. This provoked them
to note that:

. . . it is disconcerting that the present theory [i.e. their theory] cannot do as well as the
old.

Now consider Saffman’s objections. In order to obtain a Saffman spectrum in isotropic turbulence
it is essential to ensure that 〈uu′〉∞ ∼ r−3. Such a strong, long-range effect cannot arise from
Batchelor’s long-range pressure forces since, at most, they contribute only to a K∞ ∼ r−4 term
in (1.4). Thus, a Saffman spectrum can arise only if f∞ ∼ r−3 at t = 0. It would seem, therefore,
that the initial conditions determine whether or not a Batchelor (E ∼ k4) or a Saffman (E ∼ k2)
spectrum emerges. Moreover, a Saffman spectrum requires that the global linear momentum
grows as [

∫

u dV ]2 ∼ V . For grid turbulence the indications are that the spectrum is of the
Batchelor form (E ∼ k4), probably because the mechanism which generates the turbulence
cannot impart sufficient linear momentum to the flow [11].

As for the work of Proudman and Reid, it is well known that the QN approximation is
dynamically flawed, predicting anomalous results such as negative energy spectra. The most we
can say from the QN model is that if, at t = 0, we specify Gaussian statistics for u, then for an
infinitesimal period I will grow by an amount (δt)2 .

5. A reappraisal of the long-range pressure forces in isotropic turbulence

We now follow the arguments of Davidson [6]. The first thing to note is that there is an apparent
discrepancy between Proudman and Reid [10] and Batchelor and Proudman [3]. The latter show
that, for isotropic turbulence, the QN approximation yields

d2I

dt2
= 8π

d
dt

[u3r4K]∞ =
7
5
(4π)2

∫ ∞

0
(E2/k2) dk. (5.1)

This requires that fourth-order cumulants of the form
[uiu

′
ju

′′
kul]c = 〈uiu

′
ju

′′
kul〉 − 〈uiu

′
j〉〈u′′

kul〉 − 〈uiu
′′
k〉〈u′

jul〉 − 〈uiul〉〈u′
ju

′′
k〉 (5.2)

are zero for all sets of points x, x′ and x′′ at all times. This is certainly not the case in real
turbulence, but we can at least arrange for (5.2) to hold at t = 0 if not for t > 0. Thus we
cannot rule out a K∞ ∼ r−4 tail in isotropic turbulence for purely kinematic reasons.
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Compare this with the findings of Batchelor and Proudman. They assumed that, at t = 0,
〈uu′〉, 〈uuu′〉 and (uiu′

ju
′′
kul)c are all exponentially small for well separated points. This is much

less restrictive than the QN approximation and is simply an assumption that, at t = 0, remote
points are statistically independent. The question then is whether or not the pressure field will
induce algebraic tails in 〈uu′〉∞ and 〈uuu′〉∞ for t > 0. For isotropic turbulence they find no
reason why 〈uuu′〉∞ should not remain exponentially small, which seems to contradict (5.1).

A re-examination of the isotropic problem, in the spirit of Batchelor and Proudman, reveals
that, if s = u2

x − u2
y,

d2I

dt2
= 8π

d
dt

[u3r4K]∞ = 6
∫

〈ss′〉 dr = 6J (5.3)

provided (uiu′
ju

′′
kul)c is exponentially small for well separated points [6]. Now in mature

turbulence (turbulence which has largely forgotten its initial conditions and has developed a
full range of length scales) the experimental data suggests that the joint probability distribution
of the velocity at two points becomes normal as r → ∞. Thus, Davidson [6] took (5.3) to hold
for turbulence in the asymptotic state. In fact, (5.1) is a special case of (5.3) since if we specify
that (uiu′

ju
′′
kul)c is zero for all x, x′ and x′′, then (5.3) yields

d2I

dt2
= 6J =

14
5

∫

〈u · u′〉2 dr =
7
5
(4π)2

∫ ∞

0
(E2/k2) dk.

Thus, as suggested by Proudman and Reid, there is indeed the possibility of I varying with t
in isotropic turbulence. Of course, the key question is: what is the value of J in the asymptotic
state? Now J is non-negative since

J =
∫

〈ss′〉 dr =
{

∫

sdV

}2/

V. (5.4)

Thus, following Davidson [6], we can write

J = αu4L4 α ≥ 0 (5.5)

where the integral scale L is defined via

I = u2L5. (5.6)

Now (5.3) in the form

d2I

dt2
= 6αu4L3 (5.7)

can be integrated along with

du2

dt
∼ −u3

L
(5.8)

to obtain estimates of I(t) and u2(t). (It is necessary at this point to assume that α is constant in
the asymptotic state.) A comparison of these predictions with the numerical and experimental
data shows that α lies in the range 0–0.03, with a mean value of α ∼ 0.01. (Davidson [6]
considered six independent sets of data.) The quasi-normal estimate of α, on the other hand,
gives α ∼ 0.6. Evidently, if there are long-range pressure forces of the type envisaged by
Batchelor and Proudman, then they are very weak, two orders of magnitude smaller than that
predicted by the QN closure scheme. Thus, it seems that if I does indeed grow, then it grows
only very slowly.

An example of the near-invariance of I is shown in figure 1 which is taken from the large-
eddy simulation (LES) of Lesieur et al [8]. Although there is some initial variation in I, it
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Figure 1. Energy spectra in decaying turbulence calculated by Lesieur et al [8].

settles down to a constant value in the asymptotic state. All in all, it seems that the classical
view is not too far from the truth. For all practical purposes we may treat I as constant in the
asymptotic phase. Why then, is there near universal agreement that I is time dependent? Part
of the reason for this may be the over-reliance that some researchers place on various closure
models. Two typical models are the QN and EDQNM closure schemes. (The latter is a variant
of the QN model in which certain ad hoc alterations are made to the QN equations in order to
avoid negative energy spectra.) These schemes make the following claims:

(i) QN:
d2I

dt2
= 6JQN =

14
5

∫

〈u · u′〉2 dr ∼ 4u4L3 (5.9)

(ii) EDQNM:
dI

dt
= 8π[u3r4K]∞ ∼ θJQN (5.10)

where θ is a somewhat arbitrary parameter with the dimensions of time. (Typically θ is related
to the turn-over time of the small eddies.) However, we have already seen that the QN estimate
is greatly out of line with the experimental data, while the arbitrary decision to remove a time
derivative (compare (5.3) and (5.10)) in the EDQNM scheme seems hard to justify. In summary,
then, we have no reliable means of estimating the magnitude of the long-range effects (only ad hoc
closure schemes) and all we can say with certainty is that, for all practical purposes, they are
negligible.

Journal of Turbulence 1 (2000) 006 (http://jot.iop.org/) 9
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6. The decay of homogeneous turbulence in a magnetic field

We now turn to MHD turbulence. We shall see that many of the classical ideas of Landau
and Kolmogorov carry over to MHD turbulence, with little modification, and that they produce
predictions which are in line with the experiments.

6.1. From isotropic turbulence to MHD turbulence

Traditionally, MHD turbulence has been studied by two rather distinct communities. On the
one hand, engineers have studied low-magnetic Reynolds number turbulence, motivated largely
by the need to understand the flow of liquid metal in technological devices. Here, much attention
has been focused on the influence of boundaries in, for example, duct flows. The Hartmann layer
plays a central role in such theories. On the other hand, plasma physicists and astrophysicists
tend to study turbulence at high-magnetic Reynolds numbers, Rm = ul/λ & 1. (Here λ is
the magnetic diffusivity.) Much of this work has focused on homogeneous turbulence and the
motivation is very often provided by the dynamics of the solar wind and solar corona and by
dynamo theory.

The purpose of this final section is to show that the ideas of Landau and Kolmogorov can
be redeveloped in the context of MHD turbulence, and that this provides a unified view of
freely-decaying, homogeneous turbulence, valid for arbitrary magnetic Reynolds number. In the
limit of low Rm we have in mind the need to characterize small-scale turbulence in the core
of the earth, and also liquid-metal turbulence in the many metallurgical operations where the
boundaries have little influence on the turbulence.

Our starting point is the paper by Davidson [5] in which a Loitsyansky-like integral was
established for low-Rm turbulence. When the long-range correlations are weak, as they are
in conventional turbulence, this integral becomes an invariant. We extend this earlier work in
two ways. First we show that, in the absence of long-range correlations, the integral is also an
invariant of high-Rm turbulence. Second, we derive a decay law for low-Rm turbulence which is
analogous to Kolmogorov’s law. This new law is compared with experiments and the two are
found to coincide.

6.2. Landau revisited

Let us repeat Landau’s thought experiment, adapted now to MHD turbulence. Suppose that
a conducting fluid is held in a large, insulated sphere. The fluid is stirred up and then left to
itself. This time, however, the sphere sits in a uniform, imposed magnetic field, B0, so that the
turbulence is subject to a Lorentz force J ×B. (Here B is the total magnetic field B = B0 + b,
b being associated with the currents, J , induced by u within the sphere.) Since Landau’s
arguments relate to conservation of H, we must evaluate the torques acting on the fluid. The
global torque exerted on the fluid by the Lorentz force is

TB =
∫

x × (J × B0) dV +
∫

x × (J × b) dV. (6.1)

However, the second integral on the right is zero since a closed system of currents interacting
with its self-magnetic field cannot give rise to a net torque. (This follows from the conservation
of angular momentum.) Also, the first integral can be transformed using the identity

2x × [G × B0] = [x × G] × B0 + ∇ · [(x × (x × B0))G] (6.2)

where G is any solenoidal field. Combining (6.1) and (6.2) we have

TB =
{

1
2

∫

x × J dV

}

× B0 = m × B0 (6.3)
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where m is the dipole moment of the induced current. Evidently, the angular momentum of the
fluid evolves according to

ρ
dH

dt
= Tv + TB = Tv + m × B0. (6.4)

Following Landau we note that, if R & l, the influence of Tv, the viscous torque, will be negligible
on the timescale of the decay. Thus,

ρ
dH

dt
= m × B0. (6.5)

It follows that H‖ is conserved. In the event that Rm is low, we can also determine the variation
of H⊥. That is, the low-Rm version of Ohm’s law,

J = σ(−∇V + u × B0) (6.6)

combined with (6.2) yields

m = (σ/4)H × B0. (6.7)

(Here σ is the electrical conductivity.) It follows that
dH

dt
= −H⊥

4τ
τ−1 = σB2

0/ρ (6.8)

where τ is known as the Joule damping time. Evidently, H‖ is conserved while H⊥ decays
exponentially fast on a time scale of 4τ .

Let us now return to the general case of arbitrary Rm. It is not difficult to show that

〈H2
‖ 〉 = −

∫ ∫

r2
⊥〈u⊥ · u′

⊥〉 dr dx

where r = x′ − x. If we now ignore Batchelor’s long-range pressure forces we have, in the spirit
of Landau,

I‖ = 〈H2
‖ 〉/V = −

∫

r2
⊥〈u⊥ · u′

⊥〉 dr = constant. (6.9)

This was first noted, in the context of low-Rm turbulence, by Davidson [5].
As in conventional turbulence, this invariant may also be derived from the Karman–Howarth

equation. The argument proceeds as follows: the equation of motion
∂ui

∂t
= − ∂

∂xk
[ukui − bkbi/ρµ] − ∂

∂xi

[

p

ρ

]

+ (J × B0)i/ρ + v∇2ui (6.10)

yields the generalized Karman–Howarth equation,
∂

∂t
〈uiu

′
j〉 =

∂

∂rk
[〈uiuku

′
j − bibku

′
j/ρµ〉 + 〈ujuku

′
i − bjbku

′
i/ρµ〉] +

1
ρ

[

∂

∂ri
〈pu′

i〉 +
∂

∂rj
〈pu′

i〉
]

+2v∇2〈uiuj〉
1
ρ
[〈(J × B0)iu

′
j + (J ′ × B0)jui〉]. (6.11)

Consider first the case where B0 and b are both zero. Then, following the arguments of
Batchelor [2] it is readily shown that (6.11) yields

Iijmn =
∫

rmrn〈uiuj〉 dr = constant (6.12)

provided, of course, that there are no long-range correlations. This is a generalization of
Loitsyansky’s integral. When b is finite, but B0 remains zero, Batchelor’s arguments may be
repeated and again we find that Iijmn is an invariant. This was first noted by Chandrasekhar [4]
in the context of isotropic turbulence. Let us now turn to the case where B0 is finite. In the
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absence of long-range correlations, only the final term in (6.11) can contribute to the rate of
change of integrals of the type Iijmn and so

d
dt

∫

r2
⊥〈u⊥ · u′

⊥〉 dr =
1
ρ

∫

r2
⊥〈(J × B0)⊥ · u′

⊥ + (J ′ × B0)⊥ · u⊥〉 dr. (6.13)

The integrand on the right-hand side consists of terms of the form r2
⊥Jyu′

x and r2
⊥Jxu′

y. (We
take B0 to point in the z direction.) Such terms can be converted into surface integrals since

3x2ux = ∇ · (x3u) 3x3Jx = ∇ · (x3J) etc

and it follows that, in the absence of long-range correlations,

I‖ = −
∫

r2
⊥〈u⊥ · u′

⊥〉 dr = constant. (6.14)

We have arrived back at (6.9), but by a different route. Of course, the Landau approach is to
be preferred since it exposes the physical origin of the invariant (6.14).

6.3. Decay laws at low Rm

Let us now repeat Kolmogorov’s arguments, adapted to low-Rm MHD turbulence. Ohm’s
law (6.6) tells us that

∇ × J = σB0 · ∇u

and it follows that the Joule dissipation can be estimated as

〈J2〉
ρσ

∼
(

l⊥
l‖

)2 u2

τ

where lmin and l‖ are suitably defined integral scales. Now we know that the effect of B0 is to
introduce anisotropy into the turbulence, with l‖ > l⊥ (see Davidson [5]). Thus we have

〈J2〉
ρσ

=
3β
2

(

lmin

l‖

)2 u2

τ
(6.15)

where β is of order unity. (In fact it can be shown that β = 2/3 when the turbulence is isotropic.)
We can use (6.15) to estimate the rate of decay of kinetic energy. That is, the energy equation,

d
dt

〈u2〉
2

= −v〈ω2〉 − 〈J2〉/(ρσ) (6.16)

can be rewritten as
du2

dt
= −α

u3

l⊥
− β

(

l⊥
l‖

)2 u2

τ
. (6.17)

Here we have made the usual estimate of the viscous dissipation. (In conventional turbulence α
is of the order of unity.) Now our energy equation might be combined with (6.14) in the form

u2l4⊥l‖ = constant (6.18)

which offers the possibility of predicting u2(t) as well as l⊥ and l‖. In low-Rm turbulence it is
conventional to categorize the flow according to the value of the interaction parameter,

N =
σB2

0 l⊥
ρu

=
l⊥/u

τ
. (6.19)

When N is small (negligible magnetic effects), (6.17) and (6.18) reduce to

du2

dt
= −α

u3

l
u2l5 = constant
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which yields Kolmogorov’s law,

u2 ∼ t−10/7.

When N is large, on the other hand, inertia is unimportant and we have

du2

dt
= −β

(

l⊥
l‖

)2 u2

τ
u2l4⊥l‖ = constant.

It is known that l⊥ remains constant during the decay of high-N turbulence and in such a case
our equations predict

u2 ∼ u2
0(t/τ)−1/2 (6.20)

l‖ = l0[1 + 2βt/τ ]1/2 l⊥ = l0 (6.21)

which is known to be correct (see Davidson [5]). For intermediate values of N , however, we have
a problem. Equations (6.17) and (6.18) between them contain three unknowns u2, l⊥ and l‖. To
close the system we might tentatively introduce the heuristic equation

d
dt

(

l‖
l⊥

)2

=
2β
τ

(6.22)

which has the merit of being exact for N → 0 and N → ∞ but cannot be justified for intermediate
N . (Essentially the same equations were proposed by Widlund et al [12] in their one-point closure
model of MHD turbulence.) Integrating (6.17), (6.18) and (6.22) yields

u2/u2
0 = t̂−1/2[1 + (7/15)(t̂3/4 − 1)N−1

0 ]−10/7 (6.23)

l⊥/l0 = [1 + (7/15)(t̂3/4 − 1)N−1
0 ]2/7 (6.24)

l‖/l⊥ = t̂1/2[1 + (7/15)(t̂3/4 − 1)N−1
0 ]2/7 (6.25)

where N0 is the initial value of N and t̂ = 1+2(t/τ). (For simplicity we have taken α = β = 1.)
The high- and low-N results above are special cases of (6.23)–(6.25). For the case of N0 = 7/15
we obtain a simple power law,

u2/u2
0 ∼ t̂−11/7 l‖/l0 ∼ t̂5/7 (6.26)

and indeed these power laws are reasonable approximations to (6.23)–(6.25) for all values of N0
around unity. The only experiments of low-Rm, homogeneous turbulence known to the author
were carried out by Alemany et al [1] and they suggest u2 ∼ t−1.6 for N0 ∼ 1. This compares
favourably with (6.26).

6.4. A new invariant for high-Rm turbulence

When the long-range correlations are weak, I‖ is also an invariant of high-Rm turbulence. We
conclude by exploring the consequences of this. Now, for large Rm, the mean field B0 causes
an equiportion of energy between b and u. This is known as the Alfvén effect and arises
because small-scale disturbances tend to convert their energy into Alfvén waves (see, for example,
Oughton et al [9]). Thus, for large Rm, we have

u2l4⊥l‖ = constant (6.27)

〈u2〉 ∼ 〈b2〉/(ρµ) (6.28)
d
dt

[

〈u2〉
2

+
〈b2〉
ρµ

]

= −v〈ω2〉 − 〈J2〉/(ρµ). (6.29)

Journal of Turbulence 1 (2000) 006 (http://jot.iop.org/) 13

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

, S
an

 D
ie

go
] a

t 0
6:

38
 2

7 
Ja

nu
ar

y 
20

14
 



JoT
 1 (2000) 006

Was Loitsyansky correct? A review of the arguments

These may be combined to yield

el4⊥l‖ = constant (6.30)
de

dt
= −v〈ω2〉 − 〈J2〉/(ρσ) (6.31)

where e is the energy density. This suggests that, as e falls, l4⊥l‖ must increase and the indications
are that l‖ grows faster than l⊥, as in low-Rm turbulence (see Oughton et al [9]). This concludes
our survey of homogeneous MHD turbulence.

7. Conclusions

We have seen that, once isotropic turbulence has reached its asymptotic state, the classical theory
of Landau and Loitsyansky provides a good approximation to the large-scale dynamics. We have
adapted this theory to MHD turbulence and determined the MHD analogues of Kolmogorov’s
decay law. The predictions of this theory are in line with the experimental data.
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